74 research outputs found

    Binding and Uptake into Human Hepatocellular Carcinoma Cells of Peptide-Functionalized Gold Nanoparticles

    Get PDF
    One of the most daunting challenges of nanomedicine is the finding of appropriate targeting agents to deliver suitable payloads precisely to cells affected by malignancies. Even more complex is to achieve the ability to ensure the nanosystems enter those cells. Here we use 2 nm (metal core) gold nanoparticles to target human hepatocellular carcinoma (HepG2) cells stably transfected with the SERPINB3 (SB3) protein. The nanoparticles were coated with a 85:15 mixture of thiols featuring, respectively, a phosphoryl choline, to ensure water solubility and biocompatibility, and a 28-mer peptide corresponding to the amino acid sequence 21-47 of the hepatitis B virus-PreS1 protein (PreS1(21-47)). Conjugation of the peptide was performed via the maleimide-thiol reaction in methanol allowing the use of a limited amount of the targeting molecule. This is an efficient procedure also in the perspective of selecting libraries of new targeting agents. The rationale behind the selection of the peptide is that SB3, which is undetectable in normal hepatocytes, is over-expressed in hepatocellular carcinoma and in hepatoblastoma and has been proposed as a target of the hepatitis B virus (HBV). For the latter the key recognition element is the PreS1(21-47) peptide, which is a fragment of one of the proteins composing the viral envelope. The ability of the conjugated nanoparticles to bind the target protein SB3, expressed in liver cancer cells, was investigated by surface plasmon resonance analysis and in vitro via cellular uptake analysis followed by atomic absorption analysis of digested samples. The results showed that the PreS1(21-47) peptide is a suitable targeting agent for cells overexpressing the SB3 protein. Even more important is the evidence that the gold nanoparticles are internalized by the cells. The comparison between the surface plasmon resonance analysis and the cellular uptake studies suggests the presentation of the protein on cell surface is critical for efficient recognition

    SerpinB3 and Yap Interplay Increases Myc Oncogenic Activity

    Get PDF
    SerpinB3 has been recently described as an early marker of liver carcinogenesis, but the potential mechanistic role of this serpin in tumor development is still poorly understood. Overexpression of Myc often correlates with more aggressive tumour forms, supporting its involvement in carcinogenesis. Yes-associated protein (Yap), the main effector of the Hippo pathway, is a central regulator of proliferation and it has been found up-regulated in hepatocellular carcinomas. The study has been designed to investigate and characterize the interplay and functional modulation of Myc by SerpinB3 in liver cancer. Results from this study indicate that Myc was up-regulated by SerpinB3 through calpain and Hippo-dependent molecular mechanisms in transgenic mice and hepatoma cells overexpressing human SerpinB3, and also in human hepatocellular carcinomas. Human recombinant SerpinB3 was capable to inhibit the activity of Calpain in vitro, likely reducing its ability to cleave Myc in its non oncogenic Myc-nick cytoplasmic form. SerpinB3 indirectly increased the transcription of Myc through the induction of Yap pathway. These findings provide for the first time evidence that SerpinB3 can improve the production of Myc through direct and indirect mechanisms that include the inhibition of generation of its cytoplasmic form and the activation of Yap pathway

    Myocardial infarction with nonobstructive coronary arteries: from pathophysiology to therapeutic strategies

    Get PDF
    : Myocardial infarction with nonobstructive coronary arteries (MINOCA) is a heterogeneous group of clinical entities characterized by clinical evidence of acute myocardial infarction (AMI) with normal or near-normal coronary arteries on coronary angiography (stenosis < 50%) and without an over the alternative diagnosis for the acute presentation. Its prevalence ranges from 6% to 11% among all patients with AMI, with a predominance of young, nonwhite females with fewer traditional risks than those with an obstructive coronary artery disease (MI-CAD). MINOCA can be due to either epicardial causes such as rupture or fissuring of unstable nonobstructive atherosclerotic plaque, coronary artery spasm, spontaneous coronary dissection and cardioembolism in-situ or microvascular causes. Besides, also type-2 AMI due to supply-demand mismatch and Takotsubo syndrome must be considered as a possible MINOCA cause. Because of the complex etiology and a limited amount of evidence, there is still some confusion around the management and treatment of these patients. Therefore, the key focus of this condition is to identify the underlying individual mechanisms to achieve patient-specific treatments. Clinical history, electrocardiogram, echocardiography, and coronary angiography represent the first-level diagnostic investigations, but coronary imaging with intravascular ultrasound and optical coherent tomography, coronary physiology testing, and cardiac magnetic resonance imaging offer additional information to understand the underlying cause of MINOCA. Although the prognosis is slightly better compared with MI-CAD patients, MINOCA is not always benign and depends on the etiopathology. This review analyzes all possible pathophysiological mechanisms that could lead to MINOCA and provides the most specific and appropriate therapeutic approach in each scenario

    Investigating the impact of pedoclimatic conditions on the oenological performance of two red cultivars grown throughout southern Italy

    Get PDF
    The cultivated grapevine, Vitis vinifera subsp. vinifera, possesses a rich biodiversity with numerous varieties. Each variety adapts differently to varying pedoclimatic conditions, which greatly influence the terroir expression of wine regions. These conditions impact vine growth, physiology, and berry composition, ultimately shaping the unique characteristics and typicity of the wines produced. Nowadays, the potential of the different adaptation capacities of grape varieties has not yet been thoroughly investigated. We addressed this issue by studying two grape varieties, Aglianico and Cabernet Sauvignon, in two different pedoclimatic conditions of Southern Italy. We evaluated and compared the effect of different pedoclimatic conditions on plant physiology, the microbial quality of grapes using Next-Generation Sequencing (NGS) technology, the expression trends of key genes in ripe berries and the concentration of phenolic compounds in grapes and wines by HPLC-MS, HPLC-DAD, NMR and spectrophotometric analyses. Metabolomic and microbiome data were integrated with quantitative gene expression analyses to examine varietal differences and plasticity of genes involved in important oenological pathways. The data collected showed that the phenotypic response of studied grapes in terms of vigor, production, and fruit quality is strongly influenced by the pedoclimatic conditions and, in particular, by soil physical properties. Furthermore, Aglianico grape variety was more influenced than the Cabernet Sauvignon by environmental conditions. In conclusion, the obtained findings not only reinforce the terroir concept and our comprehension of grape’s ability to adapt to climate variations but can also have implications for the future usage of grape genetic resources

    Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes

    Get PDF
    The present study demonstrates that Pin1 is a common activator of key pathways involved in diabetic vascular disease in different experimental settings including primary human endothelial cells, knockout mice, and diabetic patients. Gene silencing and genetic disruption of Pin1 prevent hyperglycaemia-induced mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Moreover, we have translated our findings to diabetic patients. In line with our experimental observations, Pin1 up-regulation is associated with impaired flow-mediated dilation, increased oxidative stress, and plasma levels of adhesion molecules. In perspective, these findings may provide the rationale for mechanism-based therapeutic strategies in patients with diabete

    Perspectives in noninvasive imaging for chronic coronary syndromes

    Get PDF
    Both the latest European guidelines on chronic coronary syndromes and the American guidelines on chest pain have underlined the importance of noninvasive imaging to select patients to be referred to invasive angiography. Nevertheless, although coronary stenosis has long been considered the main determinant of inducible ischemia and symptoms, growing evidence has demonstrated the importance of other underlying mechanisms (e.g., vasospasm, microvascular disease, energetic inefficiency). The search for a pathophysiology-driven treatment of these patients has therefore emerged as an important objective of multimodality imaging, integrating "anatomical" and "functional" information. We here provide an up-to-date guide for the choice and the interpretation of the currently available noninvasive anatomical and/or functional tests, focusing on emerging techniques (e.g., coronary flow velocity reserve, stress-cardiac magnetic resonance, hybrid imaging, functional-coronary computed tomography angiography, etc.), which could provide deeper pathophysiological insights to refine diagnostic and therapeutic pathways in the next future

    TĂ­tulo: In estravag. volentes, Frederici, ac in estravag. si aliquem, Iacobi, Siciliac Regum, enarrationes perspicuae

    No full text
    Marca tip. en port. e na Ăşltima pSign.: a, b-d, A-Q, R, S-Z, 2A-2D, 2E, 2F-2G, 2HTexto a dĂşas co
    • …
    corecore